ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Roberto Passalacqua, Didier Tarabelli, Claude Renault
Nuclear Technology | Volume 116 | Number 3 | December 1996 | Pages 283-292
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT96-A35284
Articles are hosted by Taylor and Francis Online.
Large-scale experiments show that whenever a loss of coolant accident occurs water pools are generated. Stratification of steam-saturated gas develops above growing water pools causing a different thermal hydraulics in the subcompartment where the water pool is located. Hereafter, the LWR Aerosols Containment Experiment (LACE) LA4 experiment, performed at the Hanford Engineering Development Laboratory, will be studied; this experiment exhibited a strong stratification, at all times, above a growing water pool. JERICHO and AEROSOLS-B2 are part of the Ensemble de Systèmes de Codes d’Analyse d’Accident des Réacteurs à Eau (ESCADRE) code system, a tool for evaluating the response of a nuclear plant to severe accidents. These two codes are used here to simulate respectively the thermal hydraulics and the associated aerosol behavior. Code results have shown that modeling large containment thermal hydraulics without taking into account the stratification phenomenon leads to large overpredictions of containment pressure and temperature. If the stratification, above the water pool, is modeled as a zone with a higher steam condensation rate and a higher thermal resistance (that is acting as a barrier to heat exchanges with the upper and larger compartment), ESCADRE predictions match experimental data quite well. The stratification region is believed to be able to affect aerosol behavior; aerosol settling is improved by steam condensation on particles and by diffusiophoresis and thermophoresis. In addition, the lower aerosol concentration throughout the stratification might cause a nonnegligible aerosol concentration gradient and consequently a driving force for the motion of smaller particles toward the pool.