ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Jeffrey E. Woollard, Thomas E. Blue, Nilendu Gupta, Reinhard A. Gahbauer
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 100-113
Technical Paper | Radiation Protection | doi.org/10.13182/NT96-A35279
Articles are hosted by Taylor and Francis Online.
Design parameters for an epithermal neutron field for an accelerator-based source of neutrons for boron neutron capture therapy are developed. The parameters that are developed incorporate predicted biological effects in patients’ heads. They are based on an energy-spectrum-dependent neutron normal-tissue relative biological effectiveness and the treatment planning methodology of Gahbauer and his coworkers, which includes the effects of dose fractionation. The neutron field optimization parameters are evaluated for two epithermal neutron fields resulting from an accelerator-based neutron source with two different moderator assemblies. For the two moderator assemblies and moderator thicknesses evaluated, the D2O-Li2CO3 moderator assembly is superior to the BeO-MgO moderator assembly. The absorbed-dose delivered to the tumor for the D2O-Li2CO3 moderator assembly is larger than that for the BeO-MgO moderator assembly for almost all tumor depths. The treatment times for the D2O-Li2CO3 moderator assembly are slightly longer than for the BeO-MgO moderator assembly. However, for a 10-mA proton current, the treatment times for both are reasonable.