ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Jeffrey E. Woollard, Thomas E. Blue, Nilendu Gupta, Reinhard A. Gahbauer
Nuclear Technology | Volume 115 | Number 1 | July 1996 | Pages 100-113
Technical Paper | Radiation Protection | doi.org/10.13182/NT96-A35279
Articles are hosted by Taylor and Francis Online.
Design parameters for an epithermal neutron field for an accelerator-based source of neutrons for boron neutron capture therapy are developed. The parameters that are developed incorporate predicted biological effects in patients’ heads. They are based on an energy-spectrum-dependent neutron normal-tissue relative biological effectiveness and the treatment planning methodology of Gahbauer and his coworkers, which includes the effects of dose fractionation. The neutron field optimization parameters are evaluated for two epithermal neutron fields resulting from an accelerator-based neutron source with two different moderator assemblies. For the two moderator assemblies and moderator thicknesses evaluated, the D2O-Li2CO3 moderator assembly is superior to the BeO-MgO moderator assembly. The absorbed-dose delivered to the tumor for the D2O-Li2CO3 moderator assembly is larger than that for the BeO-MgO moderator assembly for almost all tumor depths. The treatment times for the D2O-Li2CO3 moderator assembly are slightly longer than for the BeO-MgO moderator assembly. However, for a 10-mA proton current, the treatment times for both are reasonable.