ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Matjaž Ravnik, Bogdan Glumac
Nuclear Technology | Volume 114 | Number 3 | June 1996 | Pages 365-372
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT96-A35240
Articles are hosted by Taylor and Francis Online.
A criticality safety analysis of a pool-type storage for spent TRIGA Mark II reactor fuel is presented. Two independent computer codes are applied: the MCNP Monte Carlo code and the WIMS lattice cell code. Two types of fuel elements are considered: standard fuel elements with 12 wt% uranium concentration and FLIP fuel elements. A parametric study of spent-fuel storage lattice pitch, fuel element burnup, and water density is presented. Normal conditions and postulated accident conditions are analyzed. A strong dependence of the multiplication factor on the distance between the fuel elements and on the effective water density is observed. A multiplication factor <1 may be expected for an infinite array of fuel rods at center-to-center distances >6.5 cm, regardless of the fuel element type and burnup. At shorter distances, the subcriticality can be ensured only by adding absorbers to the array of fuel rods even if the fuel rods were burned to ∼20% burnup. The results of both codes agree well for normal conditions. The results show that WIMS may be used as a complement to the Monte Carlo code in some parts of the criticality analysis.