ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Tanju Sofu, John M. Kramer, James E. Cahalan
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 268-279
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35207
Articles are hosted by Taylor and Francis Online.
The metalfuel version of the FPIN2 fuel element mechanics model has been incorporated into the SASSYS/SAS4A code system. In this implementation, SASSYS/SAS4A provides the fuel and cladding temperatures, and FPIN2 performs the analysis of fuel and cladding deformation. The FPIN2 results aid in the understanding of accident progression by providing the estimates of the axial expansion of fuel, time and location of cladding failure, and the condition of the fuel at the time of failure. The validation of the integrated SASSYS/SAS4A-FPIN2 model has been performed using the data from in-reactor TREAT tests for the prototypic binary and ternary fuels of the Integral Fast Reactor concept. The integrated model calculations are compared with available experimental data for the six fuel elements in these tests, and good agreement is obtained for the key parameters related to transient behavior of the metallic fast reactor fuel elements.