ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Tanju Sofu, John M. Kramer, James E. Cahalan
Nuclear Technology | Volume 113 | Number 3 | March 1996 | Pages 268-279
Technical Paper | Fission Reactor | doi.org/10.13182/NT96-A35207
Articles are hosted by Taylor and Francis Online.
The metalfuel version of the FPIN2 fuel element mechanics model has been incorporated into the SASSYS/SAS4A code system. In this implementation, SASSYS/SAS4A provides the fuel and cladding temperatures, and FPIN2 performs the analysis of fuel and cladding deformation. The FPIN2 results aid in the understanding of accident progression by providing the estimates of the axial expansion of fuel, time and location of cladding failure, and the condition of the fuel at the time of failure. The validation of the integrated SASSYS/SAS4A-FPIN2 model has been performed using the data from in-reactor TREAT tests for the prototypic binary and ternary fuels of the Integral Fast Reactor concept. The integrated model calculations are compared with available experimental data for the six fuel elements in these tests, and good agreement is obtained for the key parameters related to transient behavior of the metallic fast reactor fuel elements.