ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Akira Inoue, Masanobu Futakuchi, Makoto Yagi, Toru Mitsutake, Shin-Ichi Morooka
Nuclear Technology | Volume 112 | Number 3 | December 1995 | Pages 388-400
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT95-A35165
Articles are hosted by Taylor and Francis Online.
Void fraction measurement tests for boiling water reactor (BWR) simulated nuclear fuel assemblies have been conducted using an X-ray computed tomography scanner. There are two types of fuel assemblies concerning water rods. One fuel assembly has two water rods; the other has one large water rod. The effects of the water rods on radial void fraction distributions are measured within the fuel assemblies. The results show that the water rod effect does not make a large difference in void fraction distribution. The subchannel analysis codes COBRA/BWR and THERMIT-2 were compared with subchannel-averaged void fractions. The prediction accuracy of COBRA/BWR and THERMIT-2 for the subchannel-averaged void fraction was Δα = —3.6%, σ = 4.8% and Δ α = —4.1%, σ = 4.5%, respectively, where Δ α is the average of the difference between measured and calculated values. The subchannel analysis codes are highly applicable for the prediction of a two-phase flow distribution within BWR fuel assemblies.