ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Stephen M. Bowman, Mark D. DeHart, Cecil V. Parks
Nuclear Technology | Volume 110 | Number 1 | April 1995 | Pages 53-70
Technical Paper | Burnup Credit / Nuclear Crticality Safety | doi.org/10.13182/NT95-A35096
Articles are hosted by Taylor and Francis Online.
In the past, criticality analysis of pressurized water reactor (PWR) fuel stored in racks and casks has assumed that the fuel is fresh with the maximum allowable initial enrichment. If credit is allowed for fuel burnup in the design of casks that are used in the transport of spent light water reactor fuel to a repository, the increase in payload can lead to a significant reduction in the cost of transport and a potential reduction in the risk to the public. A portion of the work has been performed at Oak Ridge National Laboratory (ORNL) in support of the U.S. Department of Energy (DOE) efforts to demonstrate a validation approach for criticality safety methods to be used in burnup credit cask design. To date, the SCALE code system developed at ORNL has been the primary computational tool used by DOE to investigate technical issues related to burnup credit. The SCALE code package is a well-established code system that has been widely used in away from reactor applications. Criticality safety analyses are performed via the criticality safety analysis sequences (CSAS) and spent-fuel characterization via the shielding analysis sequence (SAS2H). The SCALE 27-group burnup library containing ENDF/B-IV (actinides) and ENDF/B- V (fission products) data has been used for all calculations. The American National Standards Institute/American Nuclear Society (ANSI/ANS)-8.1 criticality safety standard requires validation and benchmarking of the calculational methods used in evaluating criticality safety limits for applications outside reactors by correlation against critical experiments that are applicable. Numerous critical experiments for fresh PWR-type fuel in storage and transport configurations exist and can be used as part of a validation database. However, there are no critical experiments with burned PWR-type fuel in storage and transport configurations. As an alternative, commercial reactors offer an excellent source of measured critical configurations. Part of the work that has been performed to date to validate the SCALE-4 code system for burnup credit applications using measured critical configurations includes: