ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
American Fuel Resources requests license for N.M. uranium deconversion plant
American Fuel Resources, a provider a nuclear fuel cycle solutions headquartered in Spokane, Wash., has submitted an application to the Nuclear Regulatory Commission requesting transfer of a materials license from Idaho-based radioisotope manufacturer International Isotopes for a depleted uranium hexafluoride (DUF6) deconversion plant in Lea County, N.M.
Robert L. Buckley, Sudarshan K. Loyalka
Nuclear Technology | Volume 109 | Number 3 | March 1995 | Pages 346-356
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A35083
Articles are hosted by Taylor and Francis Online.
Models currently used in aerosol source codes for the gravitational collision efficiency are deficient in not accounting fully for two particle hydrodynamics (interception and inertia), which becomes important for larger particles. A computer code that accounts for these effects in calculating particle trajectories is used to find values of efficiency for a range of particle sizes. Simple fits to these data as a function of large particle diameter for a given particle diameter ratio are then obtained using standard linear regression, and a new model is constructed. This model is then implemented into two computer codes, AEROMECH and CONTAIN, Version 1.2. For a test problem, concentration distributions obtained with the new model and the standard model for efficiency are found to be markedly different.