ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Gyuhong Roh, Hangbok Choi
Nuclear Technology | Volume 146 | Number 3 | June 2004 | Pages 303-324
Technical Paper | Radiation Protection | doi.org/10.13182/NT04-A3508
Articles are hosted by Taylor and Francis Online.
As a part of the compatibility analysis of DUPIC fuel in Canada deuterium uranium (CANDU) reactors, the radiation physics calculations have been performed for the CANDU primary shielding system, which was originally designed for natural uranium core. At first, the conventional CANDU primary shield analysis method was validated using the Monte Carlo code MCNP-4B in order to assess the current analysis code system and the cross-section data. The computational benchmark calculation was performed for the CANDU end shield system, which has shown that the conventional method produces results consistent with the reference calculations as far as the total dose rate and total heat deposition rate are concerned. Second, the primary shield system analysis was performed for the DUPIC fuel core based on the power distribution obtained from the time-average core model, and the results have shown that the dose rates and heat deposition rates through the primary shield of the DUPIC fuel core are not much different from those of the natural uranium core because the power levels on the core periphery are similar for both cores. This study has shown that the current primary shield system is adaptable for the DUPIC fuel CANDU core without design modification.