ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Tsuyoshi Kusunoki, Masahiko Kyouya, Hideo Kobayashi, Masa-Aki Ochiai
Nuclear Technology | Volume 109 | Number 2 | February 1995 | Pages 275-285
Technical Paper | Reactor Operation | doi.org/10.13182/NT95-A35060
Articles are hosted by Taylor and Francis Online.
A Nuclear-powered ship Engineering Simulation SYstem (NESSY) has been developed by the Japan A tomic Energy Research Institute as an advanced design tool for research and development of future marine reactors. A marine reactor must respond to changing loads and to the ship’s motions because of the ship’s maneuvering and its presence in a marine environment. The NESSY has combined programs for the reactor plant behavior calculations and the ship’s motion calculations. Thus, it can simulate reactor power fluctuations caused by changing loads and the ship’s motions. It can also simulate the behavior of water in the pressurizer and steam generators. This water sloshes in response to the ship’s motions. The performance of NESSY has been verified by comparing the simulation calculations with the measured data obtained by experiments performed using the nuclear ship Mutsu. The effects of changing loads and the ship’s motions on the reactor behavior can be accurately simulated by NESSY.