ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
J. N. Mathur, M. S. Murali, R. H. Iyer, A. Ramanujam, P. S. Dhami, V. Gopalakrishnan, M. K. Rao, L. P. Badheka, Asoke Banerji
Nuclear Technology | Volume 109 | Number 2 | February 1995 | Pages 216-225
Technical Paper | Enrichment and Reprocessing System | doi.org/10.13182/NT95-A35054
Articles are hosted by Taylor and Francis Online.
An extraction chromatographic technique using octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) adsorbed on chromosorb-102 (CAC) has been tested as an alternative to the TRUEXsolvent extraction process, where CMPO has been used as the extracting agent to recover minor actinides from high-activity waste (HAW) solutions of PUREX origin. The batchwise uptake behavior of U(VI), Pu(IV), Am(III), Eu(III), Zr(IV), Fe(III), Ru(III), and from a nitric acid medium by CAC has been studied. The uptake of actinides and lanthanides are higher than those of other fission products and inert materials. The batchwise loading experiments in the presence of Nd(III)/U(VI) have shown that at lower concentrations of these metal ions, the uptake of Pu(IV), U(VI), and Am(III) are reasonably high. Studies on loading of Nd(III), U(VI), and Pu(IV) on a column containing 1.7 g of CAC have shown that Nd(III) (30 mg) and U(VI) (90 mg) could be loaded, while Pu(IV) (∼0.6 mg) was loaded on a small column containing 100 mg of CAC without any breakthrough. Further, a synthetic HAW solution as such and the actual PUREX HAW solution, after depleting the uranium content by a 30% tributyl-phosphate contact, were loaded on a CAC column. The effluents did not contain any alpha activity above the background level. The activities could subsequently be eluted with 0.04 M HNO3 (americium and rare earths), 0.01M oxalic acid (plutonium), and 0.25 M Na2CO3 [U(VI)]. The recoveries of these metal ions were found to be >99%.