ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
James P. Adams
Nuclear Technology | Volume 109 | Number 2 | February 1995 | Pages 207-215
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A35053
Articles are hosted by Taylor and Francis Online.
The Nuclear Regulatory Commission requires utilities to determine the response of a pressurized water reactor to a steam generator tube rupture (SGTR) as part of the safety analysis for the plant. The SGTR analysis includes assumptions regarding the iodine concentration in the reactor coolant system (RCS) due to iodine spikes, primary flashing and bypass fractions, and iodine partitioning in the secondary coolant system (SCS). Experimental and analytical investigations have recently been completed wherein these assumptions were tested to determine whether and to what degree they were conservative (that is, whether they result in a calculated iodine source term that is at least as large or larger than that expected during an actual event). The current study has the objective to assess the overall effects of the results of these investigations on the calculated iodine source term to the environment during an SGTR. To assist in this study, a computer program, DOSE, was written. This program uses a simple, nonmechanistic model to calculate the iodine source term to the environment during an SGTR as a function of water mass inventories, flow rates, and iodine concentrations in the RCS and SCS. The principal conclusion of this study is that the iodine concentration in the RCS is the dominant parameter because of the dominance of the primary flashing on the iodine source term.