ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Nano to begin drilling next week in Illinois
It’s been a good month for Nano Nuclear in the state of Illinois. On October 7, the Office of Governor J.B. Pritzker announced that the company would be awarded $6.8 million from the Reimagining Energy and Vehicles in Illinois Act to help fund the development of its new regional research and development facility in the Chicago suburb of Oak Brook.
Tadashi Shiraishi, Hisato Watakabe, Nobuo Nakamori, Kozo Tabuchi, Yoji Takayama, Takayoshi Sugizaki
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 181-190
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A35029
Articles are hosted by Taylor and Francis Online.
Mitsubishi is developing a new type of accumulator incorporating the technology of fluidics as one of the seeds for the improved safety of the newly constructed pressurized water reactor plants. This accumulator employs a vortex flow control device, called a vortex damper, as a fluidic device to simplify the safety systems. A fundamental experimental study with a one-fifth scale model and confirmation tests with a one-third scale model to develop the vortex damper have been carried out, and satisfactory results have been achieved. The results of the confirmation tests under the prototype pressure conditions agree well with the basic tests. The flow rate ratio can be 5 to 6. The pressure loss coefficient in the large flow rate period is 8. A cavitation factor is the main parameter of the flow rate coefficient.