ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Tadashi Shiraishi, Hisato Watakabe, Nobuo Nakamori, Kozo Tabuchi, Yoji Takayama, Takayoshi Sugizaki
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 181-190
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A35029
Articles are hosted by Taylor and Francis Online.
Mitsubishi is developing a new type of accumulator incorporating the technology of fluidics as one of the seeds for the improved safety of the newly constructed pressurized water reactor plants. This accumulator employs a vortex flow control device, called a vortex damper, as a fluidic device to simplify the safety systems. A fundamental experimental study with a one-fifth scale model and confirmation tests with a one-third scale model to develop the vortex damper have been carried out, and satisfactory results have been achieved. The results of the confirmation tests under the prototype pressure conditions agree well with the basic tests. The flow rate ratio can be 5 to 6. The pressure loss coefficient in the large flow rate period is 8. A cavitation factor is the main parameter of the flow rate coefficient.