ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
New consortium to address industry need for nuclear heat and power
Hoping to tackle a growing global demand for energy, The Open Group, a vendor-neutral technology and standards membership organization, has announced the formation of the Industrial Advanced Nuclear Consortium (IANC) to collaborate on finding advanced nuclear energy solutions to serve industrial customers.
Dmitry V. Paramonov, Mohamed S. El-Genk
Nuclear Technology | Volume 108 | Number 2 | November 1994 | Pages 157-170
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A35027
Articles are hosted by Taylor and Francis Online.
An integrated model of the TOPAZ-II space nuclear reactor system is developed and compared with measurements from the TOPAZ-II, V-71 unit tests. For a given reactor thermal power, the model calculates the coolant flow rate, temperature, and pressure throughout the system; load electric power; and overall system efficiency. Model predictions showed good agreement with the experimental data. The calculated coolant temperatures and pressure are within 15 K (<2%) and 12% of the measurements, respectively. Analysis showed that at the nominal operating thermal power of the system (115 kW), the NaK coolant is highly subcooled. The largest subcooling of 365 K occurs at the exit of the electromagnetic pump, where coolant pressure is highest, and the lowest subcooling of 275 K occurs at the exit of the reactor core, where coolant temperature is highest.