ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
W. S. Yeung, J. Shirkov, F. Seifaee
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 387-394
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A35021
Articles are hosted by Taylor and Francis Online.
The capability of the RELAP5/MOD3 computer code to analyze water hammer transients due to water column rejoining and a water slug propelled by non-condensable gas is investigated. The code-calculated results have been compared with those obtained from simple ideal analytical models. Good agreement is obtained between the calculation and analytical results in the initial period of the transient during which the water column or slug retains its sharp interface and suffers from little breakup or dissipation. As the transient proceeds, the code-calculated hydrodynamic loads are generally less than those implied by the analytical models. This is most likely due to the breakup of the water phase, which is not taken into account in the analytical models. Effects of time step and mesh sizes have also been studied. The results show that the usual Courant time limit applies. Finally, a sample calculation, corresponding to a water hammer transient in a typical Westinghouse four-loop reactor head vent system piping, is presented. The transient is induced by the opening of a relief valve and accelerating a trapped water slug through the pipeline. Hydrodynamic loads (i.e., force-time curves) on various pipe segments have been evaluated by appropriate postprocessing of the transient results. The calculated peak forces at selected pipe segments compare favorably with those estimated from the analytical models.