ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Ethwart Pollmann, Joachim Schulze, Dieter Kreuter
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 350-360
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35017
Articles are hosted by Taylor and Francis Online.
In a boiling water reactor, nuclear-thermal-hydraulic instabilities can occur if extreme operating conditions prevail. In various nuclear reactors, stability measurements have been carried out during which the location and the shape of the stability threshold was measured at a certain exposure point during the cycle. Earlier sensitivity studies have already shown that fuel assembly parameters have only a small influence on stability compared with plant parameters. The influence of plant parameters has been verified by measurements that were carried out in the German boiling water reactor Würgassen every 4 to 6 weeks during cycle 14. The results of the measurements showed for the single-loop operation point (least stable point in the core map) a strong variation of the stability threshold power during the cycle. From the beginning of cycle to the middle of cycle, the stability threshold power decreases by ∼16% (relative). After the minimum was reached, the stability threshold power increased again. Smaller variations of the stability threshold power in the core map at natural circulation indicate that not only the stability threshold varies during the cycle, but also the shape of the stability threshold is changed. Analyses with the code system STAIF have shown that the stability behavior during the cycle can clearly be correlated with the variation of the axial and radial power density profile due to control rod maneuvering and fuel burnup. Furthermore, it could be shown that for the estimation of the neutronic feedback not only the density coefficient must be taken into account but also the void variation caused by a power perturbation.