ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ethwart Pollmann, Joachim Schulze, Dieter Kreuter
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 350-360
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A35017
Articles are hosted by Taylor and Francis Online.
In a boiling water reactor, nuclear-thermal-hydraulic instabilities can occur if extreme operating conditions prevail. In various nuclear reactors, stability measurements have been carried out during which the location and the shape of the stability threshold was measured at a certain exposure point during the cycle. Earlier sensitivity studies have already shown that fuel assembly parameters have only a small influence on stability compared with plant parameters. The influence of plant parameters has been verified by measurements that were carried out in the German boiling water reactor Würgassen every 4 to 6 weeks during cycle 14. The results of the measurements showed for the single-loop operation point (least stable point in the core map) a strong variation of the stability threshold power during the cycle. From the beginning of cycle to the middle of cycle, the stability threshold power decreases by ∼16% (relative). After the minimum was reached, the stability threshold power increased again. Smaller variations of the stability threshold power in the core map at natural circulation indicate that not only the stability threshold varies during the cycle, but also the shape of the stability threshold is changed. Analyses with the code system STAIF have shown that the stability behavior during the cycle can clearly be correlated with the variation of the axial and radial power density profile due to control rod maneuvering and fuel burnup. Furthermore, it could be shown that for the estimation of the neutronic feedback not only the density coefficient must be taken into account but also the void variation caused by a power perturbation.