ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Steven E. Aumeier, John C. Lee, Derek M. Cribley, William R. Martin
Nuclear Technology | Volume 108 | Number 3 | December 1994 | Pages 299-319
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A35014
Articles are hosted by Taylor and Francis Online.
We present a new time-based cross-section parameterization scheme that allows for a more accurate global depletion analysis than current methodologies without requiring major modifications to existing codes. The new cross-section parameterization scheme makes use of few-group macroscopic cross sections calculated as a function of time at several different power levels. These cross sections are block ordered by time rather than exposure to allow for the explicit representation of instantaneous control, i.e., soluble boron concentration, and thus accurate isotopic history, within the base cross-section library. The scheme is applied to a global depletion analysis of the Slightly Enriched Spectral-Shift Reactor, an advanced converter reactor based on a pressurized water reactor design, using the CPM-2 assembly-level collision probability code and the UM2DB two-dimensional diffusion code. The depletion calculation establishes the feasibility and potential advantages of the proposed cross-section parameterization methodology and shows that through a judicious choice of spectral shift control rod withdrawal strategies, it is possible to substantially increase fuel resource utilization via the spectral shift effect while maintaining acceptable power peaking factors.