ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Gary R. Smolen, Raymond C. Lloyd, Tadakuni Matsumoto
Nuclear Technology | Volume 107 | Number 3 | September 1994 | Pages 340-355
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT94-A35012
Articles are hosted by Taylor and Francis Online.
Critical experiments were performed at the Pacific Northwest Laboratory’s Critical Mass Laboratory in 1987 and 1988 with a heterogeneous array of mixed-oxide (MOX) fuel pins immersed in mixed plutoniumuranium nitrate solutions. The 996 fuel pins, on a 1.40-cm-square pitch, were configured in a cylindrical array. The solution heavy metal concentrations ranged from 4 to 468 g/ℓ and had a Pu/Pu+U ratio of 0.2. Critical experiments were also performed with gadolinium added to the fissile solution. These experiments were designed to simulate conditions in a MOX fuel dissolver, where fuel lumps are moderated by aqueous solutions containing fissile nuclides, with and without a soluble neutron poison. For the experimental conditions examined, it was determined that the critical size of the system increased as the heavy metal concentration increased. The criticality data were used to validate two versions of the SCALE computer code system and the 27-energy-group cross-section library, derived from the Evaluated Nuclear Data File B Version IV. The calculational results indicate that SCALE-2 has some difficulty in modeling these systems. Modifications in SCALE-4 have led to more accurate keff results.