ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Risto Harjula, Jukka Lehto, Esko H. Tusa, Asko Paavola
Nuclear Technology | Volume 107 | Number 3 | September 1994 | Pages 272-278
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT94-A35007
Articles are hosted by Taylor and Francis Online.
An industrial scale process utilizing hexacyanoferrate-based ion exchangers was developed for the selective separation of radioactive cesium from nuclear waste solutions. This process was put into operation at the Loviisa Nuclear Power Plant (NPP) (pressurized water reactor, VVER-440), Finland, at the end of 1991, and it has shown superiority to any other cesium separation method used at present at nuclear plants. This paper summarizes the work that was carried out in the development of this process. In the first phase of the work, the performance of several cesium-specific precipitants and ion exchangers (eg., zeolites and hexacyanoferrates) was tested by laboratory experiments. Based on these initial tests, two precipitants, sodium hexanitrocobaltate and tungstophosphoric acid, and two hexacyanoferrate exchangers were chosen for pilotscale experiments. These experiments showed that the hexacyanoferrate ion exchangers were the most efficient materials for the removal of 137Cs and 134Cs and were suitable for large-scale column operation. With hexacyanoferrates, decontamination factors (DFs) of several thousands and volume reduction factors (VRFs) in the range of 2000 to 10000, were obtained for 137Cs and 134Cs. By using the cesium-specific precipitants, DFs and VRFs on the order of 100 were feasible in the Loviisa concentrates. After the pilot experiments, an exchanger based on hexacyanoferrate was chosen to be used in the full-scale cesium-separation plant constructed at the Loviisa NPP.