ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Risto Harjula, Jukka Lehto, Esko H. Tusa, Asko Paavola
Nuclear Technology | Volume 107 | Number 3 | September 1994 | Pages 272-278
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT94-A35007
Articles are hosted by Taylor and Francis Online.
An industrial scale process utilizing hexacyanoferrate-based ion exchangers was developed for the selective separation of radioactive cesium from nuclear waste solutions. This process was put into operation at the Loviisa Nuclear Power Plant (NPP) (pressurized water reactor, VVER-440), Finland, at the end of 1991, and it has shown superiority to any other cesium separation method used at present at nuclear plants. This paper summarizes the work that was carried out in the development of this process. In the first phase of the work, the performance of several cesium-specific precipitants and ion exchangers (eg., zeolites and hexacyanoferrates) was tested by laboratory experiments. Based on these initial tests, two precipitants, sodium hexanitrocobaltate and tungstophosphoric acid, and two hexacyanoferrate exchangers were chosen for pilotscale experiments. These experiments showed that the hexacyanoferrate ion exchangers were the most efficient materials for the removal of 137Cs and 134Cs and were suitable for large-scale column operation. With hexacyanoferrates, decontamination factors (DFs) of several thousands and volume reduction factors (VRFs) in the range of 2000 to 10000, were obtained for 137Cs and 134Cs. By using the cesium-specific precipitants, DFs and VRFs on the order of 100 were feasible in the Loviisa concentrates. After the pilot experiments, an exchanger based on hexacyanoferrate was chosen to be used in the full-scale cesium-separation plant constructed at the Loviisa NPP.