ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Hyun-Jong Paik, Patrick Raymond
Nuclear Technology | Volume 107 | Number 1 | July 1994 | Pages 103-111
Technical Paper | Special on ANP ’92 Conference / Nuclear Reactor Safety | doi.org/10.13182/NT94-A35002
Articles are hosted by Taylor and Francis Online.
The steam line break (SLB) accident in pressurized water reactors is characterized by a large asymmetric cooling of the core, asymmetric stuck control rods, and large primary coolant flow variations. Because of these space- and time-dependent neutronic and thermal-hydraulic conditions in the core, former SLB analyses that used simplified core models were usually performed with many conservative assumptions. To clarify the complicated behavior of the core, the three-dimensional neutronic code CRONOS-2, the three-dimensional core thermal-hydraulic code FLICA-4, and the system code FLICA-S are completely coupled. The results obtained from the coupled codes indicate that the local thermal-hydraulic feedback effects are important in mitigating neutronic power excursions during SLBs.