ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
Nominations open for CNTA awards
Citizens for Nuclear Technology Awareness is accepting nominations for its Fred C. Davison Distinguished Scientist Award and its Nuclear Service Award. Nominations for both awards must be submitted by August 1.
The awards will be presented this fall as part of the CNTA’s annual Edward Teller Lecture event.
Sümer Şahin, Elliot B. Kennel
Nuclear Technology | Volume 107 | Number 2 | August 1994 | Pages 155-181
Technical Paper | Fission Reactor | doi.org/10.13182/NT94-A34985
Articles are hosted by Taylor and Francis Online.
A thermo-hydrodynamic-neutronic analysis is performed for a fast, uranium carbide (UC) fueled spacecraft nuclear in-core thermionic reactor. The thermo-hydrodynamic analysis shows that a hybrid thermionic spacecraft nuclear reactor can be designed for both electricity generation and nuclear thermal propulsion purposes. This reactor would deliver a thermal thrust ∼5000 N by a specific impulse of 670 s at a hydrogen exit temperature ∼1900K. During the nuclear thermal thrust phase, the electricity generation will drop, depending on the entry temperature of the hydrogen propellant. Fresh hydrogen can be preheated through nozzle cooling up to 1000 K or more before entering the reactor. The hydrogen pressure and velocity at reactor entry are selected p = 30 atm and ν = 200 m/s, respectively. The pressure drop along the reactor core height (= 35 cm) is calculated Δp = 8.59 atm. The neutronic analysis has been conducted in S8-P3 approximation with the help of one- and two-dimensional neutron transport codes ANISN and DORT, respectively. The calculations have shown that a UC fueled electricity generating single mode thermionic nuclear reactor can be designed to be extremely compact because of the high atomic density of the nuclear fuel (by 95 % sintering density), namely, with a core radius of 8.7 cm and core height of 25 cm, leading to power levels as low as 5 kW(electric) by an electrical output on an emitter surface of 1.243 W/cm2. A reactor control with boronated reflector drums at the outer periphery of the radial reflector of 16-cm thickness would make possible reactivity changes of Δkeff > 10%—amply sufficient for a fast reactor—without a significant distortion of the fission power profile during all phases of the space mission. The hybrid thermionic spacecraft nuclear reactor mode contains cooling channels in the nuclear fuel for the hydrogen propellant. This increases the critical reactor size because of the lower uranium atomic density in this design concept. Calculations have lead to a reactor with a core radius of 22 cm and core height of 35 cm leading to power levels ∼50 kW(electric) under the aforementioned thermionic conversion conditions.