ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Dong H. Nguyen
Nuclear Technology | Volume 106 | Number 3 | June 1994 | Pages 360-372
Technical Paper | Radiation Protection | doi.org/10.13182/NT94-A34966
Articles are hosted by Taylor and Francis Online.
Tritium gas, normally in sealed containers, will be present in the U.S. Department of Energy’s (DOE’s) facilities conducting fusion energy research. A probability of tritium release, however small, exists in these facilities. Once released, tritium can back-diffuse against ventilation flow to contaminate other areas of the facility. Tritium can also be released to the environment by exhaust blowers. The problem of back-diffusion of tritium released in a typical DOE facility was examined as a function of flow rates of the ventilation system. The source term (release to the environment) in the emergency ventilation flow was also calculated. The consequences to personnel in the release room and in an adjacent corridor due to back-diffusion were determined. It was shown that for credible release scenarios, the consequences in the adjacent corridor from tritium back-diffusion were negligible. Higher doses in the release room can be avoided by well-planned emergency evacuation procedures. The source term was calculated, but the on- and off-site consequences were not determined.