ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Thomas D. Radcliff, William S. Johnson, J. Roger Parsons, Douglas E. Ekeroth
Nuclear Technology | Volume 106 | Number 1 | April 1994 | Pages 100-109
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34952
Articles are hosted by Taylor and Francis Online.
Formation of vortices in the lower plenum of existing nuclear power reactors has been hypothesized to cause observed localized coolant starvation, which results in a loss of thermal margin. A 1:9 scale model was built to study vortex formation and suppression in the Westinghouse AP600 advanced reactor design. Geometric similarity was maintained in the regions upstream of the reactor core. Air was used as the working fluid, and a wide range of model velocities were tested. Flow fields in the plenum were visualized with smoke injection and a tuft grid. Twin counterrotating vortices were observed. It is thought that these vortices were induced by viscous shear. The vortices were tested for sensitivity to overall reactor flow, imbalances in the individual coolant loop flows, and position of alignment keyways. Suppression of these vortices was achieved with a passive device placed in the lower plenum. The effect of this device at different axial elevations was studied.