ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
EDF fleet update has encouraging news for U.K. nuclear industry
The EDF Group’s Nuclear Operations business, which is the majority owner of the five operating and three decommissioning nuclear power plant sites in the United Kingdom, has released its annual update on the U.K. fleet. UK Nuclear Fleet Stakeholder Update: Powering an Electric Britain includes a positive review of the previous year’s performance and news of a billion-dollar boost in the coming years to maximize output across the fleet.
Wei-Wu Chao, Jay F. Kunze, Weimin Dai, Sudarshan K. Loyalka
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 261-270
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34927
Articles are hosted by Taylor and Francis Online.
Research reactors present a different set of operating conditions than do light water (power) reactors (LWRs). Thermal-hydraulic transient/safety codes, such as the Reactor Loss of Coolant Analysis Program (RELAP), have been verified against experimental data from several test facilities designed for the operating conditions of LWRs. However, the operating pressures, temperatures, fuel type, and flow direction are quite different in most high-power research reactors. Furthermore, the coolant (water) in these reactors generally is not degasified and hence contains dissolved air. Results are given of benchmark experiments compared with RELAP predictions for the conditions encountered during a loss-of-coolant accident for a typical research reactor.