ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Min Lee, Lih-Yih Liao
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 216-230
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34924
Articles are hosted by Taylor and Francis Online.
Critical heat flux (CHF) bundle data from the Heat Transfer Research Facility of Columbia University are used to check the validity of the CHF approaches used in thermal-hydraulic system analysis codes for light water reactors. The CHF approaches assessed include the Biasi et al. correlation of TRAC, the Groeneveld et al. CHF table lookup approach of RELAP5/MOD3, the CHF table lookup approach of CATHARE, and the CHF approach of RETRAN. Depending on system pressure, RETRAN uses the B&W2, Barnett, and modified Barnett correlations and a linear interpolation scheme to predict CHF. Results show that among these CHF approaches, the Groeneveld et al. approach has the best prediction accuracy and the smallest uncertainty in the estimation of the HTRF bundle data. On the average, the Groeneveld et al. approach overpredicts the uniform axial heat flux distribution by 3.6% and the nonuniform axial heat flux distribution by 0.9%. The performance of the RETRAN approach is comparable with that of the Groeneveld et al. approach for uniform axial heat flux. In general, the accuracy and the uncertainty of all the approaches, except that of CATHARE, are worse under a nonuniform axial heat distribution than under a uniform axial heat distribution. All the CHF approaches assessed have a tendency to overpredict the HTRF bundle data at low pressure, low measured CHF, and high CHF quality. The performance of the Groeneveld et al. approach is improved through a CHF table update and modification of the bundle correction factor using the HTRF bundle data.