ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Sandor Benedek
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 201-215
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34923
Articles are hosted by Taylor and Francis Online.
General scaling laws for transient two-fluid flow heated by a rod are presented. The similarity of these processes can be ensured only by applying the same volume and time scale with identical model parameters. In practice, the requirement of similar interfacial friction terms cannot be fulfilled because of volume (diameter) reducing scale. Numerical examples show remarkable deviations between the state variables (the values of slip) of the prototype and those of the scaled model, especially with unsteady flow rates. The deviation becomes significant when the slip of phase velocities exceeds the range of 1.6 to 1.8. Volume and time scaling can be carried out only if the phase velocities are similar (slip equal to ∼1 in the quasi-homogeneous flow model). Maintenance of the similarity of heat transfer processes of a heated fuel rod may necessitate time scaling. Furthermore, numerical examples are presented for a scale model of a prototype pressurized water reactor, employing the time-scaled homogeneous flow model.