ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
J. Abrefah, H. F. G. De Abreu, F. Tehranian, Y. S. Kim, D. R. Olander
Nuclear Technology | Volume 105 | Number 2 | February 1994 | Pages 137-144
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT94-A34918
Articles are hosted by Taylor and Francis Online.
The kinetics of the reaction of molecular iodine with preoxidized Type 304 stainless steel was studied by mass spectrometric and gravimetric techniques. The temperature range was 438 to 803 K, and the iodine partial pressures in the 1-atm total pressure water vapor-hydrogen gas ranged from 1.33 to 133 Pa. Examination of the reacted surface by electronic spectroscopies showed localized attack in the form of highly fractured crystalline deposits that contained significant iodine concentrations. The mass spectrometric results revealed no HI in the gas despite favorable thermodynamics for formation of this species. The gravimetric results showed an initial rapid increase in weight followed by a slow, long-term weight change that did not appear to approach saturation. The saturation iodine concentration on the surface due to the initial deposition process was greatest at 573 K. The kinetics of the initial uptake was analyzed by a first-order kinetics model. The characteristic times of attainment of saturation were on the order of 1 h and showed a very small activation energy.