ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
K. H. Lillibridge, S. M. Ghiaasiaan, S. I. Abdel-Khalik
Nuclear Technology | Volume 105 | Number 1 | January 1994 | Pages 123-134
Technical Paper | Special on Nuclear Criticality Safety / Heat Transfer and Fluid Flow | doi.org/10.13182/NT94-A34915
Articles are hosted by Taylor and Francis Online.
Countercurrent two-phase flow in horizontal and inclined channels, connecting a sealed liquid-filled reservoir to the atmosphere, is experimentally studied. This type of gravity-driven countercurrent two-phase flow can occur during the operation of passive safety coolant injection systems of advanced reactors. It can also occur in the pressurizer surge line of pressurized water reactors during severe accidents when the hot leg becomes voided. Four distinct flow regimes are identified: (a) stratified countercurrent, which mainly occurs when the channel is horizontal; (b) intermittent stratified-slug; (c) oscillating, which occurs when the angle of inclination is ≥30 deg; and (d) annular countercurrent. The characteristics of each regime and their sensitivity to important geometric parameters are examined. The superficial velocities in the stratified countercurrent and oscillating regimes are empirically correlated.