ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
G. Th. Analytis
Nuclear Technology | Volume 146 | Number 2 | May 2004 | Pages 99-121
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3491
Articles are hosted by Taylor and Francis Online.
Seven tight-lattice NEPTUN-III bottom-flooding experiments are analyzed by using the frozen version of RELAP5, RELAP5/MOD3.3/BETA. This work is part of the Paul Scherrer Institute (PSI) contribution to the High Performance Light Water Reactor (HPLWR) European Union project and aims at assessing the capabilities of the code to model the reflooding phenomena in a tight hexagonal lattice (which was one of the core geometries considered at the time for an HPLWR) following a hypothetical loss-of-coolant accident scenario. Even though the latest version of the code has as a default the new PSI reflood model developed by the author, which was tested and assessed against reflooding data obtained at standard light water reactor lattices, this work shows that for tight lattices, the code underpredicts the peak clad temperatures measured during a series of reflooding experiments performed at the NEPTUN-III tight-lattice heater rod bundle facility. The reasons for these differences are discussed, and the (possible) changes needed in the framework of RELAP5/MOD3.3 for improving the modeling of reflooding in tight lattices are investigated.