ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
B. Basoglu, R. W. Brewer, C. F. Haught, D. F. Hollenbach, A. D. Wilkinson, H. L. Dodds, P. F. Pasqua
Nuclear Technology | Volume 105 | Number 1 | January 1994 | Pages 14-30
Technical Paper | Special on Nuclear Criticality Safety / Nuclear Criticality Safety | doi.org/10.13182/NT94-A34907
Articles are hosted by Taylor and Francis Online.
This paper describes the development of a computer model for predicting the excursion characteristics of a postulated, hypothetical, criticality accident involving a homogeneous mixture of low-enriched UO2 powder and water contained in a cylindrical blender. The model uses point neutronics coupled with simple lumped-parameter thermal-hydraulic feedback. The temperature of the system is calculated using a simple time-dependent energy balance where two extreme conditions for the thermal behavior of the system are considered, which bound the real life situation. Using these extremes, three different models are developed. To evaluate the models, we compared our results with the results of the POWDER code, which was developed by the Commissariat à l’Energie Atomique/United Kingdom Atomic Energy Authority (CEA/UKAEA) for damp powder systems. The agreement in these comparisons is satisfactory. Results of the excursion studies in this work show that approximately 1019 fissions occur as a result of accidental water ingress into powder blenders containing 5000 kg of low-enriched (5%) UO2 powder.