ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
S. Sunder, H. Christensen
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 403-417
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34900
Articles are hosted by Taylor and Francis Online.
The gamma radiolysis of water was investigated for conditions relevant to studies of the geological disposal of nuclear fuel waste. Chemical kinetic calculations were carried out for seven systems: argon-purged water; O2-purged water; N2O-purged water; O2-purged solution containing 0.01 mol/ℓ sodium formate; O2-purged solution containing 0.01 mol/ℓ t-butanol; N2O-purged solution containing 0.01 mol/ℓ Na2CO3; and argon-purged solution containing 0.169 mol/ℓ Cl− ions. The initial pH in all systems was set at 9.5. The concentrations of the important oxidants and reductants, both molecular and radical species, are presented as a function of the dose rate and the radiolysis time. In almost all cases, radical species are at steady state after 20 h of irradiation. In argon-saturated solutions, concentrations of all radiolysis products are low (<4 × 10−8 mol/ℓ). In oxygen-saturated solutions containing formate, an H2O2 concentration as high as 1.7 × 10−3 mol/ℓ was calculated after 20 h of irradiation at a dose rate of 280 Gy/h.