ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Emmanuel Smailos
Nuclear Technology | Volume 104 | Number 3 | December 1993 | Pages 343-350
Technical Paper | Special Issue on Waste Management / Radioactive Waste Management | doi.org/10.13182/NT93-A34895
Articles are hosted by Taylor and Francis Online.
Previous corrosion studies identified the materials Hastelloy C4, Ti 99.8-Pd, and carbon steels as promising for the manufacture of long-lived high-level waste containers that could act as an engineered barrier in a rock-salt repository. Here, the efficiency of the corrosion-resistant concept using surface-welded Hastelloy C4 as corrosion protection of carbon steel containers is compared with the corrosion-allowance concept using unalloyed or low-alloyed steels. The materials are examined in three disposal relevant brines (two rich in MgCl2, one rich in NaCl) at 150°C. The results indicate that welded Hastelloy C4 is highly resistant to corrosion in the NaCl-rich brine. In the presence of sulfides or MgCl2-rich brines, however, severe pitting corrosion occurs. The three steels investigated are resistant to pitting corrosion in all brines, and their general corrosion rates imply corrosion allowances acceptable for thick-walled containers. In view of these results, carbon steels continue to be considered promising materials for long-lived containers. Further investigations on carbon steels and Ti 99.8-Pd as alternatives to Hastelloy C4 are in progress.