ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Peter Jansson, Ane Håkansson, Anders Bäcklin
Nuclear Technology | Volume 146 | Number 1 | April 2004 | Pages 58-64
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT04-A3487
Articles are hosted by Taylor and Francis Online.
The possibility of detecting replaced fuel rods in a spent-fuel assembly by means of measurement of the emitted neutron- and gamma-ray radiation has been investigated by computer simulations. The radiation field outside a boiling water reactor 8 × 8 fuel assembly with varying patterns of fuel rods replaced with lead dummies was calculated using a simple model for the source distribution and the Monte Carlo code MCNP-4C for the radiation field. In particular, the sensitivity of the thermal neutron field as measured in a Fork detector to various replacement patterns was investigated. The results suggest a detection limit of 5% of the fuel mass replaced, i.e., 3 out of 63 rods, independently of the pattern of the replaced rods.