ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
DOE meeting focuses on Marshall Islands’ legacy activity
The Department of Energy Office of Environment, Health, Safety and Security (EHSS) held its annual meeting this month with the government of the Marshall Islands. The two-and-a-half-day meeting, in Honolulu, Hawaii, focused on ongoing cooperative efforts and programs related to the legacy of U.S. nuclear weapons testing from the 1940s and 1950s. The United States began cleanup operations on the islands in the 1970s.
Ramiro Pareja, Nieves De Diego, Rosa Maria De La Cruz, Javier Del Río
Nuclear Technology | Volume 104 | Number 1 | October 1993 | Pages 52-63
Technical Paper | Material | doi.org/10.13182/NT93-A34869
Articles are hosted by Taylor and Francis Online.
Positron lifetime and microhardness measurements have been performed on untreated, thermal-aged, neutron-irradiated, and postirradiation-annealed samples of reactor pressure vessel steels with the purpose of investigating the mechanisms of irradiation-induced hardening and recovery of the mechanical properties in these materials. The positron lifetime experiments have not revealed any evidence of the formation of a significant concentration of voids or vacancy clusters in samples irradiated at ∼290°C with fluences ≤2.71 × 1023 n/m2 (E > 1 MeV), but they suggest a dislocation annealing induced by the irradiation. Isochronal annealing experiments with neutron-irradiated samples show a simultaneous recovery in their positron lifetime and microhardness at ∼340°C. From the microhardness measurements, the yield strength of the irradiated material has been estimated. The results appear to be consistent with a model of hardening due to irradiation-induced dissolution of precipitates with formation of small metastable precipitates after postirradiation aging and recovery induced by the disappearance of these metastable precipitates.