ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Masafumi Nakatsuka
Nuclear Technology | Volume 103 | Number 3 | September 1993 | Pages 426-433
Technical Note | Nuclear Fuel Cycle | doi.org/10.13182/NT93-A34863
Articles are hosted by Taylor and Francis Online.
Embrittlement of Zircaloy fuel cladding tubes by corrosion media was studied from the viewpoint of its applicability to spent-fuel reprocessing. The results from irradiated as well as unirradiated tubes are summarized as follows: 1.When iodine was employed as the solute, the use of methanol as the solvent caused significant embrittlement of the Zircaloy. 2.For the iodine-methanol solution, the embrittlement increased with the iodine content but saturated at 1 wt%. 3.A water content of up to 10 vol% in the iodine-methanol solution did not decrease the extent of embrittlement. 4.Fracture was of the grain-boundary type, and a fuel cladding tube irradiated to ∼35 GWd/t showed the same embrittlement behavior as an unirradiated one.