ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Se Woo Cheon, Soon Heung Chang
Nuclear Technology | Volume 102 | Number 2 | May 1993 | Pages 177-191
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT93-A34815
Articles are hosted by Taylor and Francis Online.
Expert systems that have neural networks for their knowledge bases are called connectionist expert systems. Several powerful advantages of connectionist expert systems over conventional rule-based expert systems are discussed. The backpropagation network (BPN) algorithm is applied to the connectionist expert system for the identification of transients in nuclear power plants. In this approach, the transient is identified by mapping or associating patterns of symptom input vectors to patterns representing transient conditions. The general mapping capability of the neural network allows one to identify a transient easily. A number of case studies are performed with emphasis on the applicability of the neural network to the classification problems. Based on the case studies, the BPN algorithm can identify the transient well, although untrained, incomplete, sensor-failed, or time-varying symptoms are given. Also, multiple transients are easily identified with a given symptom input vector.