ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hyun-Koon Kim, Seung-Hyuk Lee, Soon-Heung Chang
Nuclear Technology | Volume 101 | Number 2 | February 1993 | Pages 111-122
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34773
Articles are hosted by Taylor and Francis Online.
A new approach for estimating the departure from nucleate boiling (DNB) performance of a pressurized water reactor core is proposed in which a neural network model is introduced to predict the DNB ratios (DNBRs) for given reactor operating conditions. This model is trained against the detailed simulation results of DNBRs obtained from optimized random input vectors that are generated by Latin hypercube sampling on a wide range of parameters. The trained network is examined to verify the generalized prediction capability of the model. The test results show that a higher level of accuracy in predicting the DNBR can be achieved with the neural network model for both steady-state and transient operating conditions. The neural network model can be developed as a viable tool for on-line DNBR estimation in a nuclear power plant.