ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
The top 10 states of nuclear
The past few years have seen a concerted effort from many U.S. states to encourage nuclear development. The momentum behind nuclear-friendly policies has grown considerably, with many states repealing moratoriums, courting nuclear developers and suppliers, and in some cases creating advisory groups and road maps to push deployment of new nuclear reactors.
Hyun-Koon Kim, Seung-Hyuk Lee, Soon-Heung Chang
Nuclear Technology | Volume 101 | Number 2 | February 1993 | Pages 111-122
Technical Paper | Fission Reactor | doi.org/10.13182/NT93-A34773
Articles are hosted by Taylor and Francis Online.
A new approach for estimating the departure from nucleate boiling (DNB) performance of a pressurized water reactor core is proposed in which a neural network model is introduced to predict the DNB ratios (DNBRs) for given reactor operating conditions. This model is trained against the detailed simulation results of DNBRs obtained from optimized random input vectors that are generated by Latin hypercube sampling on a wide range of parameters. The trained network is examined to verify the generalized prediction capability of the model. The test results show that a higher level of accuracy in predicting the DNBR can be achieved with the neural network model for both steady-state and transient operating conditions. The neural network model can be developed as a viable tool for on-line DNBR estimation in a nuclear power plant.