ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Houlung Lee*, Edward S. Kenney
Nuclear Technology | Volume 100 | Number 1 | October 1992 | Pages 70-78
Technical Paper | Material | doi.org/10.13182/NT92-A34754
Articles are hosted by Taylor and Francis Online.
By introducing wide-aperture detectors, the efficiency of the conventional Compton scatter imaging technique can be greatly improved. A Monte Carlo method has been developed to investigate the imaging process of this enhanced Compton imaging technique. Using this technique, a conceptual design of a pipe inspection system has been completed. This system features the use of dual wide-aperture detectors and a photon source of two energy components. In practice, a source of more than two energy components is allowed. With this inspection system, the inner surface contours of the pipe can be reconstructed in a rather straightforward manner, and the inner surface can be fully mapped. The measured data together with the associated geometry parameters such as size and curvature will serve to provide a two- or three-dimensional contour mapping of the pipe.