ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Joseph M. Kelly, Charles W. Stewart, Judith M. Cuta
Nuclear Technology | Volume 100 | Number 2 | November 1992 | Pages 246-259
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34746
Articles are hosted by Taylor and Francis Online.
The VIPRE-02 code is a thermal-hydraulic analysis code designed to model steady-state conditions and operational transients in light water reactor cores and vessels. It uses a two-fluid representation of two-phase flow that solves conservation equations for mass, momentum, and energy for each phase. The code uses a subchannel formulation of the conservation equations but also contains an optional three-dimensional (r-θ coordinates) representation of the lower plenum for vessel modeling. The six-equation formulation is solved implicitly, by a modified Gauss-Seidel iteration procedure, and has no time step size limitation for stability. Models for phase interaction based on flow regime mapping are provided that use empirical models and correlations for heat and mass transfer at the interface and vapor generation. In addition, the code contains as an option a dynamic flow regime model, which uses an interfacial area transport equation to determine the phase interaction terms.