ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Tetsuo Goto, Hiroaki Kato
Nuclear Technology | Volume 100 | Number 3 | December 1992 | Pages 322-330
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT92-A34728
Articles are hosted by Taylor and Francis Online.
A nondestructive radioactivity assaying apparatus, especially suitable for miscellaneous waste drums, has been developed. The apparatus employs a simplified computed tomographic technique in the analytical process. The method uses 10 × 10 (horizontal) × 9 (vertical) density and radioactivity distribution information measured by Nal(Tl) detectors and an external source to compensate for photo-peak count rates from a germanium detector. Methods to compensate for the inhomogeneity of miscellaneous solid wastes are discussed. A detailed comparison of the proposed method with two other simplified methods, using >200 kinds of mockup wastes, showed an improvement in measurement precision for the proposed method over the conventional methods. The overall precision for measurements on the untreated miscellaneous waste was evaluated to be within 30% when using the proposed method.