ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
Yoshiyuki Inagaki, Kazuhiko Kunitomi, Yoshiaki Miyamoto, Ikuo Ioka, Kunihiko Suzuki
Nuclear Technology | Volume 99 | Number 1 | July 1992 | Pages 90-103
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34706
Articles are hosted by Taylor and Francis Online.
The high-temperature engineering test reactor (HTTR) is a 30-MW(thermal) helium gas-cooled reactor being constructed by the Japan Atomic Energy Research Establishment. A thermal mixing study of the coolant in the core bottom structure (CBS) of the HTTR is conducted to clarify the thermal-hydraulic characteristics of the coolant and estimate the influence of a hot streak on the intermediate heat exchanger (IHX) and a pressurized water cooler (PWC) downstream from the core. An experiment is carried out using an in-core structure test section (a full-scale simulation model of the CBS) of the helium engineering demonstration loop (HENDEL), and a numerical analysis is made using a three-dimensional time-dependent flow and heat transfer code including a k-ε model of turbulence. It is confirmed that the coolant is mixed sufficiently in the CBS and the outlet gas duct of the HTTR, and the hot streak had little effect on the IHX and the PWC.