ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Tatsuo Iyoku, Yoshiyuki Inagaki, Shusaku Shiozawa, Isoharu Nishiguchi
Nuclear Technology | Volume 99 | Number 2 | August 1992 | Pages 158-168
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34686
Articles are hosted by Taylor and Francis Online.
The High-Temperature Engineering Test Reactor (HTTR) is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on core support structures. Safety analyses have been made for the seismic design of the HTTR core using a two-dimensional seismic analysis code called SONATINA-2V, which was developed by the Japan Atomic Energy Research Institute. To evaluate the validity of the SONATINA-2V code and confirm the structural integrity of the core graphite blocks, large-scale seismic tests are conducted using a half-scale vertical section model and a full-scale seven-column model of the core graphite blocks and the core support structures. The test results are in good agreement with the analytical ones, and the validity of the analysis code is confirmed. The structural integrity of the core graphite blocks is confirmed by both analytical and test results.