ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Wen-Shan Lin, Bau-Shei Pei, Chien-Hsiung Lee
Nuclear Technology | Volume 98 | Number 3 | June 1992 | Pages 354-365
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT92-A34665
Articles are hosted by Taylor and Francis Online.
A new approach to bundle critical power predictions is presented. In addition to a very accurate critical heat flux (CHF) model, correction factors that account for the effects of grid spacers, heat flux nonuniformities, and cold walls, which are needed for critical power predictions for practical fuel bundles, are developed. By using the subchannel analysis code COBRA IIIC/MIT-1, local flow conditions needed as input to CHF correlations are obtained. Critical power is therefore obtained iteratively to ensure that the bundle power value from the subchannel analysis will cause CHF at only one point in the bundle. Good agreement with the experimental data is obtained. The accuracy is higher than that of the W-3 and EPRI-1 correlations for the limited data base used in this study. The effects of three types of fuel abnormalities, namely, local heat flux spikes, local flow blockages, and rod bowing, on bundle critical power are also analyzed. The local heat flux spikes and flow blockages have no significant influence on critical power. However, rod bowing phenomena have some effect, the severity of which depends on system pressure, the gap closure between adjacent rods, and the presence or absence of thimble tubes (cold walls). A correlation for the influence of various rod bowing phenomena on bundle critical power is developed. Good agreement with experimental data is shown.