ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
OECD NEA meeting focuses on irradiation experiments
Members of the OECD Nuclear Energy Agency’s Second Framework for Irradiation Experiments (FIDES-II) joint undertaking gathered from September 29 to October 3 in Ketchum, Idaho, for the technical advisory group and governing board meetings hosted by Idaho National Laboratory. The FIDES-II Framework aims to ensure and foster competences in experimental nuclear fuel and structural materials in-reactor experiments through a diverse set of Joint Experimental Programs (JEEPs).
Kenny C. Gross, Robert V. Strain
Nuclear Technology | Volume 98 | Number 1 | April 1992 | Pages 113-123
Technical Paper | Fast Reactor Safety / Nuclear Fuel Cycle | doi.org/10.13182/NT92-A34655
Articles are hosted by Taylor and Francis Online.
A bifrequency reactivity oscillation procedure (ROP) was devised at the Experimental Breeder Reactor II (EBR-II) to be used as a diagnostic tool for characterizating mechanisms responsible for the release and transport of short-lived fission products from the surface of exposed fuel. A series of ROP experiments was conducted during operation at 74% of full power with a breached fuel pin in the core. Detailed analyses of the results using bivariate spectral decomposition and cross-correlation techniques are presented. Comparison of the results of these experiments with those obtained from earlier tests with an unclad fuel source provides conclusive evidence that all nonrecoil fission product release phenomena originate from mechanisms acting inside the breached element itself. Implications of the findings from this study in terms of the goals of high-sensitivity fission product surveillance are discussed.