ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Daniel Magallon, Hermann Hohmann, Hubert Schins
Nuclear Technology | Volume 98 | Number 1 | April 1992 | Pages 79-90
Technical Paper | Fast Reactor Safety / Nuclear Reactor Safety | doi.org/10.13182/NT92-A34652
Articles are hosted by Taylor and Francis Online.
Two experiments known as Tl and T2 are performed in the test section TERMOS of the FARO facility. Quantities of the order of 100 kg of molten pure UO2 ∼3000°C are poured into 130 kg of sodium at 400°C and 0.1 MPa contained in a 0.28-m-diam test tube over a height of 2.5 m. The tests show a melt delivery rate twice as high in T2 as in Tl. Because of the large scale of the experiment, the tests reveal new features concerning this type of interaction. Particularly, fuel/coolant interaction (FCI) occurs that induces stepwise penetration and dispersion of the melt, and a limitation of the melt quantity that could penetrate into the sodium. Sodium pressure peaks up to 6.0 MPa and pressurizations of the 0.150-m3 gas phase blanket up to 0.8 MPa are recorded. These FCIs are interpreted as vapor explosions in nearly saturated sodium. Quantities of 60 kg for Tl and 45 kg for T2 of UO2 fragments are collected in the debris catcher located at the bottom of the test tube. A debris bed structure resulting from this type of interaction is identified and characterized. Porosity is almost constant all over the bed height while permeability increases by a factor of 30 when going from the top to the bottom of the bed.