ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Mano Subudhi
Nuclear Technology | Volume 97 | Number 3 | March 1992 | Pages 362-370
Technical Paper | Reactor Operation | doi.org/10.13182/NT92-A34644
Articles are hosted by Taylor and Francis Online.
A DS-416 low-voltage air circuit breaker manufactured by Westinghouse is mechanically cycled to identify age-related degradation in the various breaker subcomponents, specifically in the power-operated mechanism. This accelerated aging test is performed on one breaker unit for over 36 000 cycles. Three separate pole shafts, one with a 60-deg weld, one with a 120-deg weld, and one with a 180-deg weld in the third pole lever, are used to characterize cracking in the welds. In addition, during the testing, three different operating mechanisms and several other parts are replaced as they become inoperable. Among the seven welds on the pole shaft, welds 1 and 3 are found to be critical ones whose fracture can result in misalignment of the pole levers. This can lead to problems with the operating mechanism, including the burning of coils, excessive wear in certain parts, and overstressed linkages. Furthermore, the limiting service life of a number of subcomponents of the power-operated mechanism, including the operating mechanism itself, is assessed. Based on these findings, suggestions are provided to alleviate the age-related degradation that could occur as a result of normal closing and opening of the breaker contacts during the breaker’s service life.