ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Shlomo Ron, Judah Tzoref, Doron Gal
Nuclear Technology | Volume 97 | Number 3 | March 1992 | Pages 294-302
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34637
Articles are hosted by Taylor and Francis Online.
The amount of fission product release during a core heatup accident in a medium-sized high-temperature gas reactor depends on the size of the inadvertent opening in the primary circuit; this dependence is assessed. The opening triggers a depressurization event that is assumed to be coupled with the failure of the forced circulation in both decay-heat removal systems. The scenario investigated is a beyond-design-base accident. The DSNP modular simulation code is used. A two-dimensional model is developed to simulate the HTR-500 design. The study shows that the depressurization process does not contribute significantly to the sweeping out (from the primary circuit) of fission products released from the fuel during the core heatup. There is also no significant variation in the results when the opening size is >33 cm2, and only a slight sensitivity is found when the rupture size is between 3.3 and 33 cm2. The fission product release decreases considerably in the range from 1 to 3.3 cm2. The smallsized rupture is of major significance, as the failure of the relief valves to reclose increases the frequency of the event. In addition, the highest core temperature in the most severe depressurization accident scenario is evaluated, and its calculated value is lower than the graphite sublimation temperature. Although the simulation closely follows the German HTR-500 design, the conclusions may be applied to the general concept of the medium-sized high-temperature gas reactor.