ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Eric B. Bartlett, Robert E. Uhrig
Nuclear Technology | Volume 97 | Number 3 | March 1992 | Pages 272-281
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34635
Articles are hosted by Taylor and Francis Online.
In this work, nuclear power plant operating status recognition is investigated using a self-optimizing stochastic learning algorithm artificial neural network (ANN) with dynamic node architecture learning. The objective is to train the ANN to classify selected nuclear power plant accident conditions and assess the potential for future success in this area. The network is trained on normal operating conditions as well as on potentially unsafe conditions based on nuclear power plant training simulator-generated accident scenarios. These scenarios include hot- and cold-leg loss of coolant, control rod ejection, total loss of off-site power, main steamline break, main feedwater line break, and steam generator tube leak accidents as well as the normal operating condition. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results. Continued research work is indicated.