ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Takanobu Kamei, Mitsuaki Yamaoka
Nuclear Technology | Volume 97 | Number 3 | March 1992 | Pages 264-271
Technical Paper | Fission Reactor | doi.org/10.13182/NT92-A34634
Articles are hosted by Taylor and Francis Online.
A new core concept with a negative sodium void reactivity coefficient has evolved. The core is composed of two core layers in the axial direction. The core layers are separated by an internal blanket, the central region of which comprises a neutron-absorbing material such as boron carbide or tantalum. Consequently, the two core layers are completely decoupled as regards neutronics, leading to an effective increase in neutron leakage from the core region when sodium is voided. This design is expected to be free from the disadvantages of a large core radius, as seen in a conventional spoiled core such as a pancake core. The design is described in detail, and its application to a 300-MW(electric) metal fuel core and to a 450-MW(electric) minor actinide burner core is given as an example.