ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
Byung S. Lee, William A. Jester, Joseph M. Olynyk
Nuclear Technology | Volume 97 | Number 1 | January 1992 | Pages 63-70
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT92-A34626
Articles are hosted by Taylor and Francis Online.
An on-line radioiodine monitoring system designed to operate under nuclear accident conditions is tested at the hot cell laboratory of a radiopharmaceutical production facility. The purpose of the work is to demonstrate that the patented Pennsylvania State University radioiodine monitor, using stabilized NaI(Tl + 241Am) detectors, can generate information about concentration of airborne radioiodine in real time. In the test of continuous iodine monitoring, the real-time 132I activities agree with those obtained by a high-purity germanium detector within a factor of ∼4. From the simultaneous operation of two monitors, one at the inlet and one at the outlet of the hot cell filter bank, the hot cell filter bank efficiency for the removal of airborne radioiodine is estimated to be at least 99.88%.