ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Nasir M. Mirza, Sikander M. Mirza, N. Ahmad
Nuclear Technology | Volume 96 | Number 3 | December 1991 | Pages 237-247
Technical Paper | Fission Reactor | doi.org/10.13182/NT91-A34586
Articles are hosted by Taylor and Francis Online.
A computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m3/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at ∼500 m3/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to 24Na and 56Mn, and it increases by ∼2% when the flow rate decreases from 1000 to 145 m3/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.